Does Tai Chi improve balance and reduce falls incidence in neurological disorders? A systematic review and meta-analysis

Stanley John Winser, William WN Tsang, Karthikeyan Krishnamurthy and Priya Kannan

Abstract
Objective: To evaluate the effect of Tai Chi on balance and reducing falls incidence in neurological disorders.

Data sources: AMED, Embase, Web of Science, SCOPUS, EBSCO and Medline from inception until February 2018.

Review method: Randomized controlled trials of Tai Chi compared with active or no treatment control, measuring balance with the Berg Balance Scale or the Timed Up and Go Test and number of falls in neurological disorders were included. Methodological quality was assessed using PEDro and quality of evidence using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system.

Results: A total of 10 studies involving 720 participants were reviewed. Seven studies were in Parkinson’s disease and three in stroke. Seven studies were of high methodological quality and three were low. Meta-analyses of balance measured with the Timed Up and Go Test in Parkinson’s disease revealed a statistically significant effect of Tai Chi compared to no treatment (weighted mean difference (WMD), −2.13; 95% confidence interval (CI), −3.26 to −1.00; \(P<0.001 \)) and was insignificant (WMD, −0.19; 95% CI, −1.74 to 1.35; \(P=0.81 \)) when compared with active treatment. Tai Chi significantly reduced falls incidence in Parkinson’s disease (odds ratio (OR), 0.47; 95% CI, 0.29 to 0.77; \(P=0.003 \)) and stroke (OR, 0.21; 95% CI, 0.09 to 0.48; \(P<0.001 \)). Balance measured with the Timed Up and Go Test comparing Tai Chi and active treatment was insignificant (WMD, 0.45; 95% CI, −3.43 to 2.54; \(P=0.77 \)) in stroke.

Conclusion: Tai Chi is effective in reducing falls incidence in Parkinson’s disease and stroke. This systematic review did not find high-quality studies among other neurological disorders.

Keywords
Nervous system diseases, Tai Ji, Tai Chi, accidental falls, meta-analysis

Received: 16 October 2017; accepted: 4 April 2018

Introduction
Falls are common in many neurological disorders, and one treatment that may improve balance and reduce falls incidence is Tai Chi. Tai Chi translated as ‘supreme ultimate’ is a form of Chinese
martial art practised for defence and health benefits.3 Synonymous terminologies for Tai Chi include Tai Chi Chuan, Tai Chi Quan, Taijiquan and T’ai Chi.2 Tai Chi has been in practice for over 300 years and has undergone multiple modifications resulting in the emergence of different schools such as Yang, Chen, Ng, Sun and Yin; however, the underlying principles of Tai Chi remain the same.2,4 Tai Chi moves are performed in a smooth, relaxed and circular fashion involving multiple joints of the extremities and trunk.2 In practice, a set of moves are called forms and the forms are named after the number of moves involved.

Tai Chi is thought to improve balance and reduce falls incidence by strengthening muscles of the knee6 and ankle,9 promote even weight distribution and improve awareness of the body and movement.7 Tai Chi may benefit balance and reduce falls incidence in a variety of neurological conditions including Parkinson’s disease,8,9 stroke,10 multiple sclerosis,11 traumatic brain injury,12 cerebellar ataxia13 and spinal cord injury14 and reduce falls incidence in Parkinson’s disease8,9 and stroke10 although the evidence base is poor.

Previous systematic reviews and meta-analyses of Tai Chi for Parkinson’s disease,15–17 multiple sclerosis18 and stroke19 found Tai Chi may benefit balance,15,17 motor function15–17 and mobility20 in Parkinson’s disease, improve physical function in multiple sclerosis18 and balance in stroke.19 However, the available reviews are condition-specific and have pooled either all controls or all active treatments together in a meta-analysis. The efficacy of Tai Chi compared to specific controls (no treatment/active) is therefore not known. To our knowledge, there are no systematic reviews evaluating the efficacy of Tai Chi for other neurological disorders such as traumatic brain injury, cerebellar ataxia or spinal cord injury. The recent review by Song et al.16 is not specific to Tai Chi; they have included another form of Chinese martial art, QiGong. Therefore, this review will include all neurological disorders in addition to Parkinson’s disease, multiple sclerosis and stroke. The aim of this systematic review with meta-analysis was to determine whether Tai Chi training improves balance and reduces falls incidence when compared to control conditions of either active treatment or no treatment in people with neurological disorders.

Methods

The following databases were searched from database inception to 28 February 2018: AMED, Embase, Web of Science, SCOPUS, EBSCO and Medline. Search terms were constructed with four themes which included, neurological disorders, intervention, outcome measures and study type. Supplementary Appendix 1 reports our search strategy for each database. Studies were included for this systematic review if they (1) included participants with one of the following neurological disorders: Parkinson’s disease, stroke, multiple sclerosis, Alzheimer’s disease, traumatic brain injury, cerebellar ataxia, cerebral palsy, spinal cord injury and peripheral neuropathy; (2) included participants with neurological disorders without limiting to a specific diagnosis; (3) delivered Tai Chi as an intervention; (4) assessed balance using the Berg Balance Scale or Timed Up and Go Test or both and falls incidence using number of falls; and (5) were randomized controlled trials. Unpublished work (thesis) and non-English publications were also included for the review. No alternative outcome measures of balance were used in the searches. Studies were excluded if they were conference abstracts and conducted among elderly with or without neurological disorder.

Duplicates were removed and titles were screened by one reviewer (S.J.W.). Abstract and full-text screening was conducted by two reviewers (S.J.W. and K.K.). Discrepancies were resolved by discussion until consensus was reached. If consensus was not reached, a third reviewer (P.K.) was consulted. Manual searches of the reference list of included studies were conducted. Authors of the included studies were approached to obtain additional information not reported in the publication.

The methodological quality of all included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale.21 We did not exclude studies based on quality; however, quality was considered when interpreting the findings. The methodological quality scores for the included studies were obtained from the PEDro website (https://
Winser et al.

www.pedro.org.au/), and if the score was not available, two independent reviewers (K.K. and P.K.) scored the methodological quality across the 10 items of the PEDro scale. Scores above 6 were interpreted as high quality and scores less than or equal to five were interpreted as low quality.22

The quality of evidence for each outcome measure was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system.23 The GRADE profiler software 3.6.1 (http://tech.cochrane.org/revman/other-resources/gradepro/download) was used for this estimation. The quality of evidence was classified into one of four levels: ‘very low’, ‘low’, ‘moderate’ or ‘high’,23 the overall quality of evidence is based on the lowest quality of evidence for the outcome.24

Data analysis

Two independent reviewers (S.J.W. and K.K.) extracted the following data: (1) author and year of publication; (2) population, recruitment setting, country, language and sample size; (3) intervention(s) and dosage of intervention; (4) time-points of assessment; and (5) pre- and post-treatment means. Studies of similar neurological disorder, outcome measures and time-points were grouped together for pooling. We considered usual care control as active treatment control. Post-intervention data were used to obtain the pooled estimate of the difference between groups using Review Manager 5.3 software. For continuous data, size of treatment effect and its 95% confidence interval (CI) were estimated. For dichotomous data, the size of the treatment effect as the odds ratio (OR) along with the 95% CI was estimated. To obtain pooled estimates of the difference between groups, weighted mean difference (WMD) was calculated. Chi-square test was used to determine heterogeneity. A fixed effects model was used for minimal heterogeneity ($I^2 < 50\%$) or else a random effects model was used.25 A P-value of ≤ 0.05 (two-tailed) indicated statistical significance.

Results

The electronic searches identified 344 studies of which eight studies met the inclusion criteria. Hand searching of reference lists of included studies yielded two additional studies. We had 10 studies included in the systematic review (Figure 1). Supplementary Appendix 2 reports the number of studies obtained from each database and the reasons for exclusion during screening.

The studies were published between 2008 and 2015. Nine studies were published in English8–10,26–31 and one in Chinese.32 Nine of the 10 included studies were journaled publications and one was a published thesis.28 The sample sizes of included studies ranged from 207,28 to 195.9 The included studies reported eight comparisons involving 720 participants, with an average of 72 participants per study. Seven studies examined Tai Chi for improving balance or fall incidence or both in people with Parkinson’s disease8,9,27–29,31,32 and three studies in stroke.10,26,30 Summary of the included studies is reported in Table 1. The mean age range of the included participants with Parkinson’s disease was between 60 and 72 and those with stroke were between 53.4 and 69.9 years. Among studies in Parkinson’s disease, Yang style 24-form Tai Chi was delivered in three,8,31,32 6-movement with 8-form Tai Chi in one,9 and Yang style short-form Tai Chi in two studies.28,29 One study did not report the Tai Chi form used.27 Among the three stroke studies, one30 used 10-form Tai Chi, one10 used Yang style 24-form and one study used the short-form of Sun style Tai Chi.26 The duration of the intervention ranged between 42 and 24 weeks.9 Except for two studies,27,31 all the others reported employing a trained Tai Chi instructor for teaching the Tai Chi moves to participants.

The methodological quality of individual studies included in this review is reported in Supplementary Appendix 3. The mean PEDro score of included studies was 6.1. All included studies reported random allocation and between-group statistical comparisons. In all, 9 of 10 studies reported point estimate variability and 8 studies reported adequate follow-up. The common methodological flaws identified in the included studies were a failure to conceal allocation (80%) and failure to conduct analysis on an intention-to-treat basis (60%). No included study reported participants or therapist blinding; and three studies (30%) reported failure to blind the outcome assessor.
The GRADE evidence profile presented in Supplementary Appendix 4 provides quality of evidence for the available comparisons using one of the three outcome measures in participants with Parkinson’s disease and stroke. The GRADE quality of evidence for the outcome number of falls in Parkinson’s disease contributed by four studies was high; this GRADE quality rating concurs with the PEDro quality rating obtained for all four studies. The outcome number of falls in Parkinson’s disease obtained high GRADE quality because the quality of evidence for both comparisons Tai Chi versus active therapies and no treatment was high. Similarly, number of falls in stroke, reported by one high methodological quality study, obtained high GRADE quality. As
Table 1. Summary of the included studies (n=10).

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>PEDro quality (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-Yeung et al. 26</td>
<td>English Hong Kong</td>
<td>Exp = Sun style Tai Chi (Short form) (60 minutes, 1/week × 12 weeks)</td>
<td>TUG</td>
<td>High (6)</td>
</tr>
<tr>
<td></td>
<td>Age (years) = 63.4 (SD, 10.7)</td>
<td>Con = Breathing and active mobilization exercises plus 1 educational talk (60 minutes, 1/week × 12 weeks)</td>
<td>Follow-up = 0, 6, 12 and 18 weeks</td>
<td></td>
</tr>
<tr>
<td>Choi et al. 27</td>
<td>English Republic of Korea</td>
<td>Exp = Tai Chi. Clinic practice (60 minutes, 1/week × 12 weeks). Self-practice (60 minutes, 1/week × 12 weeks)</td>
<td>TUG</td>
<td>High (6)</td>
</tr>
<tr>
<td></td>
<td>Age (years) = n/s</td>
<td>Con = No treatment</td>
<td>Follow-up = 0 and 12 weeks</td>
<td></td>
</tr>
<tr>
<td>Gao et al. 8</td>
<td>English Hong Kong and China</td>
<td>Exp = 24-form of Yang style Tai Chi (60 minutes, 3/week × 12 weeks)</td>
<td>BBS</td>
<td>High (6)</td>
</tr>
<tr>
<td></td>
<td>Age (years) = n/s</td>
<td>Con = No treatment</td>
<td>TUG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender = 50 M, 26 F</td>
<td></td>
<td>Number of falls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Follow-up = 0, 12 and 24 weeks</td>
<td></td>
</tr>
<tr>
<td>Gladfelter 28</td>
<td>English USA</td>
<td>Exp = Yang style short form of Tai Chi (60 minutes, 2/week × 12 weeks)</td>
<td>BBS</td>
<td>High (6)</td>
</tr>
<tr>
<td></td>
<td>Age (years) = 72.0 (SD, 8.5)</td>
<td>Con = No treatment</td>
<td>TUG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender = 12 M, 5 F</td>
<td></td>
<td>Number of falls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Follow-up = 0 and 12 weeks</td>
<td></td>
</tr>
<tr>
<td>Hackney and Earhart 29</td>
<td>English USA</td>
<td>Exp = Yang Short Style form of Tai Chi (60 minutes, 2/week × 13 weeks)</td>
<td>BBS</td>
<td>Low (5)</td>
</tr>
<tr>
<td></td>
<td>Age (years) = 63.76 (SD, 9.91)</td>
<td>Con = No treatment</td>
<td>TUG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender = 21 M, 5 F</td>
<td></td>
<td>Follow-up = 0 and 13 weeks</td>
<td></td>
</tr>
<tr>
<td>Kim et al. 30</td>
<td>English Korea</td>
<td>Exp = General Physical therapy (30 minutes, 2/week × 6 weeks) and Tai Chi exercise (60 minutes, 2/week × 6 weeks)</td>
<td>TUG</td>
<td>Low (5)</td>
</tr>
<tr>
<td></td>
<td>Age (years) = n/s</td>
<td>Con = General Physical therapy (30 minutes, 2/week × 6 weeks)</td>
<td>Follow-up = 0 and 6 weeks</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcome measures<sup>a</sup></th>
<th>PEDro quality (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et al.<sup>9</sup>
English
USA</td>
<td>PD
 n = 195
 Age (years) = n/s
 Gender = 122 M, 73 F</td>
<td>Exp = Tai Chi, six movements with eight-form routine (60 minutes, 2/week × 24 weeks)
 Con 1 = Resistance training (60 minutes, 2/week × 24 weeks)
 Con 2 = Stretching (60 minutes, 2/week × 24 weeks)</td>
<td>TUG
 Number of falls
 Follow-up = 0.12, 24 and 36 weeks</td>
<td>High (7)</td>
</tr>
<tr>
<td>Taylor-Piliae et al.<sup>10</sup>
English
USA</td>
<td>Stroke
 n = 145
 Age (years) = 69.9 (SD, 10.0)
 Gender = 77 M, 68 F</td>
<td>Exp = Yang style 24-form of Tai Chi (60 minutes, 3/week × 12 weeks)
 Con 1 = Group-based aerobic exercises (60 minutes, 3/week × 12 weeks)
 Con 2 = Usual care</td>
<td>Number of falls
 Follow-up = 0 and 12 weeks</td>
<td>High (8)</td>
</tr>
<tr>
<td>Zhang et al.<sup>31</sup>
English
China</td>
<td>PD
 n = 40
 Age (years) = n/s
 Gender = 24 M, 16 F</td>
<td>Yang style 24-posture short-form Tai Chi (60 minutes, 2/week × 12 weeks)
 Multimodal exercise training (60 minutes, 2/week × 12 weeks)</td>
<td>BBS
 TUG
 Follow-up = 0 and 12 weeks</td>
<td>High (7)</td>
</tr>
<tr>
<td>Zhu et al.<sup>32</sup>
Chinese
Taipei, Taiwan and China</td>
<td>PD
 n = 40
 Age (years) = n/s
 Gender = 23 M, 17 F</td>
<td>Tai Chi Quan (Yang style – 24 form) (30–45 minutes, 2/day, 5/week × 4 weeks)
 Walking practice (30–45 minutes, 2/day, 5/week × 4 weeks)</td>
<td>BBS
 Follow-up = 0 and 4 weeks</td>
<td>Low (5)</td>
</tr>
</tbody>
</table>

^M: male; ^F: female; ^{PD}: Parkinson's disease; ^{n/s}: not stated; ^{Exp}: experimental group; ^{Con}: control group; ^{BBS}: Berg Balance Scale; ^{TUG}: Timed Up and Go Test; ^{GRADE}: Grading of Recommendations, Assessment, Development, and Evaluation.

^aOutcome measures considered for GRADE and meta-analysis.
described in the PEDro quality assessment, GRADE evaluation of study limitations found lack of allocation concealment in eight studies (80%), failure to use intention-to-treat analysis in six studies and failure to blind participants and therapist in all included studies. No reporting/publication bias or serious indirectness was identified in any of the included studies. All included studies allowed acceptable precision based on the ‘optimal information size’ calculated for the review. No other limitations such as selective reporting of outcomes, use of non-validated outcome measures or stopping early for benefit were identified in any of the included studies.

Tai Chi for Parkinson’s disease

The pooled analysis for the outcome Berg Balance Scale showed a non-significant effect of Tai Chi compared to active therapies (WMD = 4.21; 95% CI, –1.98 to 10.39; \(P = 0.18 \); Figure 2(a)) and Tai Chi compared to no treatment control after 12 weeks of intervention (WMD = 1.55; 95% CI, –0.80 to 3.90; \(P = 0.20 \); Figure 2(b); Table 2). While the pooled analysis for the outcome Timed Up and Go Test showed a non-significant effect of Tai Chi compared to active therapies (WMD = –0.19; 95% CI, –1.74 to 1.35; \(P = 0.81 \); Figure 3(a)) and a significant effect of Tai Chi when compared with no treatment (WMD = –2.13; 95% CI, –3.26 to –1.00; \(P = 0.0002 \); Figure 3(b)). Meta-analysis found a statistically significant effect of Tai Chi compared with active therapies (OR = 0.47; 95% CI, 0.29 to 0.77; \(P = 0.003 \); Figure 4(a)) and Tai Chi compared with no treatment after 12 weeks of intervention (OR = 0.29; 95% CI, 0.11 to 0.79; \(P = 0.02 \)) for the outcome number of falls (Figure 4(b)). Detailed forest plots are reported in Supplementary Appendix 5.

Tai Chi for stroke

Tai Chi compared to active therapies on balance assessed with the Timed Up and Go Test was non-significant at 12 weeks (WMD = –0.45; 95% CI, –3.43 to 2.54; \(P = 0.77 \); Figure 5(a)) and 18 weeks (WMD = 1.81; 95% CI, –5.39 to 9.02; \(P = 0.62 \); Figure 5(b)) of training. However, the pooled OR from fixed effects meta-analysis showed a statistically significant effect of Tai Chi compared with active therapies after 12 weeks of intervention for number of falls in stroke (OR = 0.21; 95% CI, 0.09 to 0.48; \(P = 0.0003 \); Figure 6; Table 2). No included study evaluated the effect of intervention on balance with Berg Balance Scale in stroke.

Sensitivity analysis

No sensitivity analyses were conducted because meta-analysis was only performed on two to three studies.

Discussion

This systematic review provides high quality and high GRADE evidence for the efficacy of Tai Chi for reducing falls incidence in people with Parkinson’s disease and stroke. The pooled analysis showed a non-significant effect of Tai Chi for balance measured with Berg Balance Scale in people with Parkinson’s disease. Meta-analysis of the no-treatment controlled studies for balance measured with the Timed Up and Go Test was significant in Parkinson’s disease; however, non-significant
Effect of Tai Chi was observed when the control group received active therapies. This does not exclude the possibility that these effects could be a result of placebo. Meta-analysis showed no significant effect of Tai Chi for balance in stroke.

This systematic review has several strengths; a comprehensive and detailed search strategy was used to identify studies of Tai Chi for neurological disorders. This review is the most comprehensive to date as it included common neurological disorders as search terms in the search strategy. We did not restrict studies to the English language, thereby minimizing the possibility of language bias. Most importantly, Tai Chi is a traditional Chinese martial art from ancient China; research in this area is popular and common in China and Hong Kong region. By including studies published in the Chinese language, we have enabled inclusion of most of the studies published until February 2018. The other strengths are the rigorous and systematic methodology and use of GRADE for evaluation of the quality of evidence; GRADE is reported to provide the most explicit and transparent judgements of the quality of evidence.23

This systematic review did have some limitations: (1) less number of studies were included for meta-analysis and therefore sensitivity analysis could not be done. (2) Quality of studies was not considered as one of the criteria for inclusion. This could have possibly influenced the outcomes of our systematic review. (3) Finally, we restricted our

Figure 3. (a) Effect of Tai Chi compared with active therapies for balance measured with Timed Up and Go test in Parkinson’s disease and (b) effect of Tai Chi compared with no treatment for balance measured with Timed Up and Go Test in Parkinson’s disease.

Figure 4. (a) Effect of Tai Chi compared with active therapies on rate of falls in Parkinson’s disease and (b) effect of Tai Chi compared with no treatment on rate of falls in Parkinson’s disease.

Figure 5. (a) Effect of Tai Chi compared with active therapies on balance measured with Timed Up and Go Test in stroke after 12 weeks and (b) effect of Tai Chi compared with no treatment on balance measured with Timed Up and Go Test in stroke after 18 weeks.
review to randomized controlled trials. Although systematic reviews of randomized controlled trials are considered highest level of evidence for investigating the efficacy of interventions, we excluded studies of Tai Chi in people with diseases other than Parkinson’s disease and stroke due to study design.

This systematic review is the first to include all neurological conditions with balance problems; previous systematic reviews were condition specific.15–19 A recent systematic review of Tai Chi for Parkinson’s disease by Zhou et al.15 found significant effects of Tai Chi for balance measured with the Timed Up and Go Test. Their results can however not be compared with this systematic review because they pooled all studies of Tai Chi for balance in Parkinson’s disease and stroke due to study design.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Outcome</th>
<th>Intervention vs. control</th>
<th>WMD</th>
<th>95% CI</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson’s</td>
<td></td>
<td>Tai Chi versus active therapies28,31,32</td>
<td>4.21</td>
<td>−1.98 to 10.39</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tai Chi versus no treatment8,29</td>
<td>1.55</td>
<td>−0.80 to 3.90</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tai Chi versus active therapies9,28,31</td>
<td>−0.19</td>
<td>−1.74 to 1.35</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tai Chi versus no treatment8,27</td>
<td>−2.13</td>
<td>−3.26 to −1.00</td>
<td>0.0002*</td>
</tr>
<tr>
<td>Stroke</td>
<td>Number of falls</td>
<td>Tai Chi versus active therapies9,28</td>
<td>0.47 (OR)</td>
<td>0.29 to 0.77</td>
<td>0.003*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tai Chi versus no treatment8</td>
<td>0.29 (OR)</td>
<td>0.11 to 0.79</td>
<td>0.02*</td>
</tr>
<tr>
<td>Stroke</td>
<td>TUG</td>
<td>Tai Chi versus active therapies26,30</td>
<td>0.45</td>
<td>−3.43 to 2.54</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Number of falls</td>
<td>Tai Chi versus active therapies10</td>
<td>0.21 (OR)</td>
<td>0.09 to 0.48</td>
<td>0.0003*</td>
</tr>
</tbody>
</table>

BBS: Berg Balance Scale; OR: odds ratio; TUG: Timed Up and Go Test; WMD: weighted mean difference.
*Statistical significance (\(P \leq 0.05 \)).

Our meta-analysis of Tai Chi for balance in Parkinson’s disease partly concurs with the results of the recent review by Song et al.16 which report an overall improvement of balance. Nevertheless, it is worth noting the remarkable differences between the two reviews: first, our systematic review restricted the intervention to Tai Chi, whereas they included both Tai Chi and Qigong. Second, their systematic review considered Berg Balance Scale, posturography or single leg standing for balance assessment, whereas we restricted
balance assessment to the Berg Balance Scale and Timed Up and Go Test. Finally, we restricted our review to randomized controlled trials, but their review included randomized, non-randomized and quasi-experimental designs. Providing evidence for Tai Chi based on high-quality studies using the most commonly used outcome measure of balance (Berg Balance Scale and Timed Up and Go Test) adds focus to our finding making it unique.

Tai Chi is postulated to improve balance by progressively challenging the base of support through persistent weight shifts between the lower extremities. This is also thought to improve efficiency of the ankle and hip strategy while maintaining balance. Second, Tai Chi improves proprioceptive inputs from the trunk and lower limb resulting in an improvement in balance. Among people with stroke, Tai Chi practice reduces visual dependence by improving the interaction between the vestibular and visual inputs. Tai Chi has also demonstrated an improvement in reaction time resulting in a reduction in number of falls in people with stroke. However, there is limited evidence in literature to substantiate this theory. Future research may consider testing the reaction time to improve the understanding of the underlying mechanism for falls prevention in people with Parkinson’s disease.

Heterogeneity existed in the style, forms, frequency and duration of Tai Chi in the included studies. Recommendations on Tai Chi parameters require standardization. Future research is required to provide definitive guidelines regarding Tai Chi parameters recommendations for balance and falls prevention in this population. We recommend a qualitative survey among Tai Chi experts on the parameter recommendations for Tai Chi among neurological disorders.

This systematic review found high methodological quality and high GRADE evidence for the efficacy of Tai Chi for reducing falls incidence in people with Parkinson’s disease. The meta-analyses were conducted among two to four studies and therefore these results need to be considered with caution. Data from individual study found that Tai Chi is beneficial for reducing falls incidence in people with stroke. The effect of Tai Chi on balance in Parkinson’s disease and stroke is uncertain owing to the limited number of studies included in meta-analysis. At present, the evidence is not strong enough to warrant any strong clinical recommendation in the two conditions studied. One or two large well-designed clinical trials are needed in Parkinson’s disease and stroke. Review found no randomized trials of Tai Chi for other neurological disorders apart from Parkinson’s disease and stroke. Well-designed controlled studies are required to determine whether Tai Chi can improve balance and reduce falls risk in other neurological disorders such as multiple sclerosis, traumatic brain injury, spinal cord injury and cerebellar ataxia.

Clinical Messages

- Tai Chi reduces falls incidence in people with Parkinson’s disease, but the evidence is limited.
- Data from an individual study found Tai Chi is beneficial for reducing falls incidence in people with stroke.
- There is insufficient evidence at present to conclude whether Tai Chi does or does not improve balance in people with Parkinson’s disease and stroke.

Acknowledgements

The team of authors would like to acknowledge our Research Assistant Mr Kwan Willis for his assistance with translating Chinese articles to English. This work will be presented at the forthcoming ACRM 2017 Annual conference in Atlanta. The abstract of this study has been published with the APMR journal, October issue.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Trial registration
PROSPERO 2016 CRD42016043086

Supplementary Material
Supplementary material is available for this article online.

ORCID iD
Stanley John Winser https://orcid.org/0000-0002-8766-3688

References