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Electroacupuncture at Zusanli (ST36) ameliorates colonic
neuronal nitric oxide synthase upregulation in rats with
neurogenic bowel dysfunction following spinal cord injury

J Guo1,5, Y Zhu1,2,5, Y Yang1, X Wang3, B Chen3, W Zhang4, B Xie1, Z Zhu1, Y Yue1 and J Cheng1

Study design Experimental study.
Objective To determine the effects of electroacupuncture (EA) at Zusanli (ST36) on colonic motility and neuronal nitric oxide synthase
(nNOS) expression in rats with neurogenic bowel dysfunction (NBD) after spinal cord injury (SCI).
Setting Second School of Clinical Medical, Nanjing University of Chinese Medicine, Jiangsu, China.
Methods We divided 30 adult Sprague–Dawley rats into a sham group (10 rats), a model group (SCI alone, 10 rats) and a EA group
(SCI+EA at ST36, 10 rats). Defecation time was recorded as the time from activated carbon administration (on day 15) to evacuation of
the first black stool. Immunohistochemical, real-time PCR and western blot analyses were performed to assess changes in nNOS-
immunoreactive cells, and nNOS messenger RNA (mRNA) and protein, respectively, after 14 experimental days.
Results Defecation time was lower in the EA group than in the model group (Po0.01). On immunohistochemical analysis, nNOS was
localized in the myenteric plexus of the colon. The number of nNOS-immunoreactive cells and the intensity of nNOS staining were
greater in the model group than in the sham group and lesser in the EA group than in the model group. Consistent with the
immunohistochemical findings, nNOS mRNA and protein expression was higher in the model group than in the sham group and lower
in the EA group than in the model group (Po0.05 for both).
Conclusion Increased colonic nNOS expression can induce/aggravate NBD in SCI rats. EA at ST36 ameliorated NBD, possibly by
downregulating colonic nNOS expression.
Spinal Cord advance online publication, 5 July 2016; doi:10.1038/sc.2016.76

INTRODUCTION

A large majority of people with spinal cord injury (SCI)-induced
neurogenic bowel dysfunction (NBD) suffer from functional intestinal
obstruction, constipation, fecal incontinence or a combination of these
conditions.1–3 In SCI patients with NBD, there is a slowdown of the
basal electrical rhythm of the colon, delayed colonic motility and
severe anorectal dysfunction.4,5 NBD causes great physical and
psychological harm to SCI patients and results in a poor health-
related quality of life.1,6

Neurogenic bowel management after SCI includes non-pharmaco-
logical, pharmacological and surgical treatments.7 However, none of
these treatments can help regain self-controlled bowel function in SCI
patients. Moreover, some treatments such as catheterization, colost-
omy and enema will likely result in pain and adverse event.
Electroacupuncture (EA) is a simple, noticeably effective and side-
effect-free management. The effects of EA in NBD have been
supported by animal and clinical studies. Hong et al.8 demonstrated
that EA at Zusanli (ST36) could improve the gastric-emptying rate and
promote gastrointestinal motility in rats with SCI. In addition, Wong
et al.9 found that EA could decrease the need with bowel care in

patients with NBD after SCI. Liu et al.10 also reported that EA can
improve SCI patients’ self-controlled bowel functions. However, these
studies had some weaknesses in trial methodology and reporting. As
the quality of these acupuncture-based studies is of dispute, evidence
regarding the effects of EA in NBD is still lacking. In addition, the
mechanism of EA in NBD has yet to be clarified.
Colon motility is mediated by contractile cholinergic neurons and

relaxant non-adrenergic non-cholinergic (NANC) neurons in the
myenteric plexus between the circular and longitudinal muscle layers.
Decreased or increased NANC neurons might be involved in the
pathophysiology of NBD. Nitric oxide (NO) is the primary inhibitory
NANC neurotransmitter, which is synthesized by the neuronal
isoform of NO synthase (nNOS). The first article on the immunolo-
gical detection of nNOS in rat myenteric neural cells and processes
was reported in 1990.11 Since then, nNOS localization in myenteric
neural cells and processes has been detected in different species
including humans.12–14 In addition, research over the last few years
has revealed that spinal cord hemisection, impact injury or focal spinal
cord trauma results in the upregulation of nNOS expression.15,16

Thus, nNOS may participate in the pathogenesis of NBD after SCI.
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From this background, we hypothesized that nNOS downregulation
may constitute the mechanism underlying the effects of EA treatments
on NBD. We performed immunohistochemical, real-time reverse
transcription PCR (RT-qPCR) and western blot analyses to examine
the changes in nNOS messenger RNA (mRNA) expression, nNOS
protein level and nNOS immunoreactivity, respectively, in the
myenteric plexus of the colon in rats subjected to SCI.

MATERIALS AND METHODS

Animals and groups
The experiments were approved by the Animal Care and Use Committee of
Nanjing University of Chinese Medicine and were in accordance with
international ethical guidelines for the care and use of laboratory animals. All
efforts were made to minimize the number of animals used and their suffering.
A total of 30 adult Sprague–Dawley rats, 15 males and 15 females, weighing
300± 20 g (SCXK 2008-0016, Shanghai Laboratory Animal Research Center,
Shanghai, China) were used in this experiment. The rats were housed five per
cage on a 12-h dark/light cycle in a temperature- and humidity-controlled
environment. Food and water were supplied ad libitum before the experiment.
The animals were assigned randomly into two groups as follows: (1) sham

group, animals subjected to sham SCI operation at Th10 (n= 10); (2) SCI
model group, animals subjected to SCI (n= 20). Then, the SCI model that
successfully established, in accordance with the random number table, was
divided into the EA group (SCI+EA at ST36, 5 mm perpendicular needling;
2 Hz/15 Hz, 1–2mA, condensation–rarefaction wave; 30 min per day) and the
model group (SCI alone).

SCI model
The SCI was inflicted under anesthesia with 10% chloral hydrate administered
via intraperitoneal (i.p.) injection (300 mg kg− 1). Th11-Th12 laminectomies
were performed with the dura intact. As shown in Figure 1, the spinal cord was
exposed very carefully at a low thoracic level (Th10) and severely damaged
using an NYU impactor (height, 60 mm; weight, 10 g; W.M. Keck Center for
Collaborative Neuroscience, Rutgers, the State University of New Jersey,
USA).17,18 Bleeding was observed from the impacted dura, and the lower
limbs and tail of the rats appeared flaccid. The overlying muscle and skin were
then sutured to close the wound. The rats were postoperatively treated with
gentamicin (5000 U kg− 1 per day, i.p.) for 14 days. The control (sham group)
rats underwent all the surgical procedures, except for the SCI. In these animals,
Th11-Th12 laminectomies were performed, and the spinal cord was exposed
for 5 min, after which the muscle and skin incisions were closed. All the
animals were housed individually in clear plastic cages and given food ad
libitum. Water was supplied twice a day at the same time every day for 14 days,
and 2 h later the bladders of the SCI rats were emptied by the Crede technique.
In addition, the experimenters tried their best to keep the perineum and
paralyzed lower limbs of the rats clean.
The SCI model was judged using the modified 21-Point Basso, Beattie,

Bresnahan (BBB) Locomotor Rating Scale. BBB score was measured at the 2nd
and 15th day after modeling, and 0 point at the 2nd day after modeling
indicates success of the SCI model. The rats were individually assessed in an

open space and independently observed by two researchers who were blinded
to the study groups.

EA protocol
Needles (0.25× 13 mm2; Huatuo, Suzhou Medical Appliance, Suzhou, Jiangsu,
China) and Electro-Acu Stimulators (SDZ-II; Suzhou Medical Appliance) were
used in this study. The parameters of electric stimulation were as follows:
condensation–rarefaction wave with an electric current frequency of 2 or 15 Hz;
and intensity between 1 and 2 mA.
Acupoints were localized according to the WHO Standardized Acupuncture

Points Location. Needles were bilaterally and vertically inserted at ST36 to a
depth of 5 mm. Paired alligator clips with negative and positive electrodes were
attached to the needle holders at the right and left ST36. The rats in the EA
group received EA treatment for 30 min per day for 14 days.

Measurement of defecation time
Ten rats in each group were used to examine intestinal peristaltic function. The
rats were fasted for 24 h from the 14th day, but they were not deprived of
water. After 24 h, the rats in each group were orally administered 2 ml of 10%
activated carbon. We then recorded the time until the defecation of the first
black stool.

Immunohistochemistry
Five rats were randomly selected from each group and deeply anesthetized with
10% chloral hydrate (300 mg kg− 1, i.p.). Then, a 1-cm length of the distal
colon was obtained from each rat and fixed in 4% paraformaldehyde for
histological examination. The tissues were embedded in paraffin and cut into
4-μm-thick serial coronal sections on Leica RM 2135 BioCut Rotary Microtome
(Leica Ltd., Wetzlar, Germany). Then, two to four colon sections per animal
were obtained. After dewaxing and dehydration, the sections were incubated in
3% H2O2 at room temperature for 10 min and then rinsed in distilled water.
Next, the slides were placed in a pressure cooker filled with boiling sodium
citrate buffer (pH 6.0) and heated under pressure. At 1.5 min after steaming,
the pressure cooker was removed from the heat source and cooled down to
room temperature with tap water. The container was opened, the slides were
rinsed twice for 2 min each with phosphate-buffered saline (PBS; pH 7.4), and
then blocked with 5% bovine serum albumin for 20 min at room temperature.
The serum was removed, and the primary antibody was added. After incubating
the tissue at 37 °C for 1.5 h, we washed the sections three times with PBS for
2 min each and then incubated them with a secondary antibody at 37 °C for
20 min. After three 2-min rinses in PBS, the slides were incubated with
streptavidin–biotin complex for 20 min at 37 °C. The sections were rinsed again
in PBS for four times, for 5 min each, and then the staining was visualized using
diaminobenzidine as the chromogen. The slides were observed and examined
for color change in order to determine when to terminate chromogen
development. Antibody staining was followed by counterstaining with hema-
toxylin for 1 min. Finally, the sections were dehydrated, cleared and mounted
with neutral balsam. Two slides per rat and four to five fields per slide were
randomly selected and micrographed at × 200. The average optical density was
calculated by the JD801 Imaging Analysis System (JEDA Science-Technology
Development Co., Jiangsu, China).

Figure 1 Establishment of the spinal cord injury model by the weight dropping method. A full color version of this figure is available at the Spinal Cord
journal online.
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Real-time PCR
Five rats were randomly selected from each group for RT-qPCR assays of nNOS
mRNA expression in the colon tissues.8 In brief, treated colon tissues were
lysed, and total RNA was extracted using RNA Isolater Total RNA Extraction
Reagent (R401-01, Vazyme Biotech, Nanjing, China). The total RNA (2.5 μg)
was reverse transcribed in 50 μl of a reaction system using HiScript Q RT
SuperMix for qPCR (R213, Vazyme Biotech). The thermal cycling parameters
for the reverse transcription were 10 min at 25 °C, 30 min at 42 °C and 5 min
at 85 °C with subsequent cooling to 4 °C. First-strand complementary DNA
was generated as the template. Then, RT-qPCR of the complementary DNA
was carried out using SYBR Green I, according to the manufacturer’s protocols
(Takara, Dalian, China). Glyceraldehyde 3-phosphate dehydrogenase was
selected as the endogenous reference gene. The nNOS forward primer sequence
was 5′-TGAACGGCTGGAGGATGC-3′, whereas the reverse primer sequence
was 5′-CAGGGTGGGAGGCGAGAT-3′. The glyceraldehyde 3-phosphate
dehydrogenase forward primer sequence was 5′-GAGTCCACTGGCGTC
TTCA-3′, and its reverse primer sequence was 5′-GGGGTGCTAAGCA
GTTGGT-3′. Reactions were incubated at 95 °C for 5 min followed by 40
cycles of 10 s at 95 °C and 30 s at 60 °C. After amplification, PCR product
bands were examined on a 2% electrophoretic agarose gel, and the specificity
of each reaction was controlled by melting curve analysis. The relative level of
mRNA was calculated using the equation 2-ΔΔCT, where ΔΔCT= (CT target

gene�CT control gene) sample2-(CT target gene�CT control gene) sample1.

Western blot analysis
Four rats were randomly selected from each group for western blot analysis.
Samples of the colon were homogenized with 1 ml cold radioimmunopreci-
pitation assay lysis buffer containing 2 μl protease inhibitor cocktail tablets
(Vazyme Biotech). Manipulations were carried out on ice. Each sample
(100 mg) was mixed with 1 ml lysis buffer and then centrifuged at 10,000× g
at 4 °C for 5 min. Protein concentrations of the supernatants were measured
using the bicinchoninic acid method. Then, the samples were boiled at 100 °C
for 5 min. Aliquots of 120 μg of the crude samples were separated using
SDS-polyacrylamide gel electrophoresis, and the proteins were electrophoreti-
cally transferred from the gel to polyvinylidene difluoride membranes.
Unoccupied protein-binding sites on the membranes were blocked with 5%
milk powder (non-fat dry milk) in PBS containing Tween-20 (PBS-T) for 2 h at
room temperature, and the membranes were subsequently incubated overnight
at 4 °C with primary antibodies recognizing tubulin (TRUE-ref anti-a-tubulin
mAb; dilution, 1:5000 in PBS-T; Vazyme Biotech) and nNOS (anti-nNOS;
dilution, 1:500 in PBS-T; Abcam, Cambridge, UK). The blots were washed
extensively in PBS-T after incubation with the primary antibodies and then
exposed to the secondary antibodies, namely, horseradish peroxidase-
conjugated goat anti-mouse IgG (H+L) and horseradish peroxidase-
conjugated goat anti-rabbit IgG (H+L), at a dilution of 1:5000 in PBS-T, for
1 h at room temperature. Next, the blots were rinsed with PBS-T again,
followed by color development using electrochemiluminescence (ECL) reagent.
The immunoblots were scanned usingChemiScope3500 chemiluminescence
imaging systems (ClinX Science Instruments, Shanghai, China), and the optical
densities of the target protein bands were quantified using Chemi Analysis (Gel
Analysis v2.02, NIH, Bethesda, MD, USA). The results were determined by the
ratio of nNOS to tubulin. All of the assessments were measured by blinded
observers.

Statistical analysis
All statistical calculations were performed using SPSS software (version 16.0,
SPSS, Inc., Chicago, IL, USA). Intergroup comparisons were performed using
one-way analysis of variance. If the variance is equal, we will use the least
significant difference test. Otherwise, the Dunnett T3 test will be used. All
values are reported as means± s.e. P values o0.05 were considered statistically
significant.

RESULTS

BBB scores at the 2nd and 15th day after SCI modeling
The BBB scores on the 2nd day after the operations showed that the
SCI model had been successfully established in all 20 rats subjected to

SCI. All the 20 rats were divided randomly into the model group
(n= 10) and the EA group (n= 10). At the 15th day after modeling,
BBB scores in the model group (21± 0) and the EA group
(7.35± 0.82) were significantly lower than the sham group
(7.85± 1.45, Po0.01 for both, Figure 2a).

EA shortened the defecation time of SCI rats
The defecation time (time from the administration of activated
carbon to the evacuation of the first black stool) was
shortest (338.60± 75.44 min) in the EA group and longest
(541.20± 61.79 min) in the model group (Figure 2b). The defeca-
tion time in the sham group was 395.40± 60.15 min. The defeca-
tion time was significantly shorter in the sham and EA groups than
in the model group (Po0.01 for both).

nNOS-immunoreactive cell number decreased after EA
On immunohistochemical analysis in the sham group, nNOS-
immunoreactive cells were found to be localized to areas surrounding
the myenteric plexus of the colon, and the staining was prominent in
the cytoplasm of positively stained cells. More nNOS-immunoreactive
cells and intense nNOS staining were observed in the model group,
compared with the sham group (average optical density: 0.76± 0.04 vs
0.48± 0.06, Po0.01). Fewer nNOS-immunoreactive cells and less
intense nNOS staining were observed in the EA group than in the
model group (average optical density: 0.54± 0.06 vs 0.76± 0.04,
Po0.01, Figure 3).

nNOS mRNA and protein expression decreased after EA
We found that nNOS mRNA expression in colon tissue was
significantly higher in the model group than in the sham group
(0.004± 0.001 vs 0.001± 0.0003; Po0.05) and significantly lower in

Figure 2 BBB score and defecation time in the rats of the three study
groups. (a) BBB score and (b) defecation time were measured at the 15 day
after modeling. The results are expressed as the mean± s.e. *Po0.01
compared with the sham group. #Po0.01 compared with the model group.
EA, electroacupuncture.
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the EA group than in the model group (0.001± 0.0006 vs
0.004± 0.001, Po0.05, Figure 4a).
To substantiate the qualitative immunostaining findings, we deter-

mined the protein levels of nNOS in colon tissue by performing
western blot analysis. The protein levels of nNOS were significantly
higher in the model group than in the sham group (0.28± 0.10 vs
0.04± 0.02, Po0.01) and significantly lower in the EA group than in
the model group (0.06± 0.03 vs 0.28± 0.10, Po0.01, Figures 4b and
c), which is consistent with the results of immunohistochemistry and
RT-qPCR.

DISCUSSION

Acupuncture is one of the most popular alternative therapies, and it
has been used for thousands of years. EA is a common form of
acupuncture in which an electric current is passed through acupunc-
ture needles.19 The parameters of EA can be precisely characterized,
and hence it is reproducible. Studies have shown that EA at ST36 at a
specific frequency can improve functional gastrointestinal diseases
such as functional dyspepsia20 and irritable bowel syndrome.21 ST36,
the he-sea point of the Stomach Meridian of Foot-Yangming, is one of
the most common points for EA. Clinical studies have demonstrated
the efficacy of EA at ST36 for regulating the intestinal motility.22,23 On
the basis of the clinical effects, we want to explore the mechanism.
One study has proposed that ST36 is the ‘heterotopic point’ for the
distal colon.24 EA at ST36 stimulates colonic motility, possibly through
the segmental reflex, which increases the activity of parasympathetic
postganglionic neurons to release acetyl choline (Ach). Two other
studies have shown that, in normal, freely moving, conscious rats, EA
at ST36 can improve the contractility of the colon.25,26 One of these
studies reported that the stimulatory effect was transmitted via a sacral

parasympathetic efferent pathway,26 and the other suggested that it
was mediated by the cholinergic pathway.25 However, thus far, the
mechanism underlying the beneficial effects of EA at ST36 on colonic
function remains controversial. Little effort has been made, particu-
larly in pathological conditions.
Previous studies have identified the efficacy of somatic stimulation

for patients with neurogenic bladder after SCI,27,28 and peripheral
nerve stimulation may have effects on the central nervous system.29,30

In this study, we observed a significant increase in nNOS mRNA and
protein expression in the rat colon after Th10 injury. This finding
indicated that nNOS is an important factor in NBD secondary to
traumatic SCI, and nNOS upregulation may facilitate the emergence of
NBD following SCI. After EA treatment for 14 days, there was a
marked decrease in nNOS mRNA and protein levels in the rat colon,
with the nNOS mRNA and protein levels in the EA group nearly
recovering to the levels in the sham (control) group. Furthermore,
assessments of the functional outcomes showed that GI transit was
significantly increased in the EA group compared with the model
group, indicating that the EA therapy had ameliorated NBD, possibly
via the downregulation of nNOS. Our results are consistent with
another report on NOS expression after SCI. Hong et al.8 found that
the expression of inducible NOS in gastric and small intestinal tissue
was obviously enhanced in SCI rats, and EA at ST36 obviously
downregulated inducible NOS expression.
In our study, immunohistochemical analyses showed that nNOS

expression was localized to the myenteric plexus, which is part of the
enteric nervous system (ENS). The ENS is an extensive intrinsic
nervous system in the gastrointestinal tract. It can control intestinal
functions even when completely separated from the central nervous
system (CNS).31 The defecation function is regulated by both the CNS

Figure 3 Immunohistochemical analysis of neuronal nitric oxide synthase (nNOS) in the myenteric plexus in colon tissue samples. (a) Sham group; (b) Model
group and (c) EA group. The magnification is ×200. Scale bar=50 μm. The brown color indicates NOS-positive neurons. (d) Average optical density (AOD) of
nNOS-immunoreactive cells. The animals survived for 15 days. *Po0.01 compared with the sham group. #Po0.01 compared with the model group. A full
color version of this figure is available at the Spinal Cord journal online.
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and ENS. In healthy individuals, the propulsive reflexes of the distal
colon and rectum are regulated by central control centers, and when
appropriate defecation is triggered by central commands that are
relayed through the defecation center in the lumbosacral spinal
cord.32 If the cortico-spinal connections to the defecation centers
are severed by spinal injury, voluntary control of defecation will be
lost.33 However, direct stimulation of the defecation center in the
spinal cord can still cause coordinated emptying of the colon with
the help of the ENS.34 Therefore, if the spinal defecation center
remains intact after spinal injury, it can be stimulated to command
the ENS pathways for bowel emptying.35 NO, the primary
transmitter for enteric inhibitory motor neurons, is formed in the
neurons by nNOS and can directly control colonic motility.36 In
addition, it is known that colonic motility follows a rhythm, and
current data suggest that the rhythms in colonic motility are
regulated by both clock genes and nNOS.37,38 Hoogerwerf et al.38

found that, in nNOS knockout mice, both rhythmic changes in the
colonic circular muscles in response to Ach and stool output were
attenuated. This indicated that nNOS may have an important role
in the regulation of Ach-mediated depolarization. This evidence
further solidified the role of nNOS in modulating the rhythmic
change of colonic motility. Change of nNOS expression may lead to
a predominant inhibitory effect on colonic smooth muscle during

the inactive phase while the inhibition attenuates during the active
phase of colonic motor activity.

CONCLUSION

Our preliminary results suggest that an increase in nNOS concentra-
tion in the colon can affect the rhythmicity of colon contractions and
induce or aggravate NBD in rats with SCI. EA at ST36 was beneficial
for the treatment of NBD, and its effects were realized by the
downregulation of nNOS expression in the colon. Further study is
needed to characterize the effect of nNOS inhibitor administration at
different stages of SCI.
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